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Design of Dielectric Waveguide Bandpass
Filters Using Parallel-Coupled Gratings

PERTTI K. IKALAINEN, STUDENT MEMBER, IEEE, AND GEORGE L. MATTHAEI, FELLOW, IEEE

Abstract — Techniques for the design of narrow-band (of the order of a
percent or so), bandpass filters using dielectric waveguide gratings are
presented. These filters use both single, uncoupled gratings and parallel-
coupled configurations of gratings to form multiresonator bandpass filter
structures. Transmission-line equivalent circuits are used to model the
dielectric waveguide gratings. Using this model, it is then shown how
direct-coupled-resonator theory can be applied to such filter structures to
synthesize a prescribed passband having Chebyshev or maximally flat
characteristic. On the other hand, the parallel-coupled gratings give these
filters broad and strong, absorptive stopbands, as is explained. Experimen-
tal results are presented which show good agreement between theoretical
and measured results.

I. INTRODUCTION

IELECTRIC WAVEGUIDES are potentially attrac-

tive for use in millimeter-wave and optical integrated
circuits. Over the years a number of different configura-
tions of dielectric waveguide (DW) have been proposed,
and their waveguiding properties have been studied. How-
ever, so far relatively few practical techniques have been
established for the design of components using DW, espe-
cially filters. The purpose of this study has been to in-
vestigate means for bandpass filter design using DW grat-
ings. The design of bandpass filters in DW has been
hampered by the fact that in most cases, the energy guided
by a DW is loosely bound to the guide, and therefore
conventional forms of resonators usually cannot be used
because radiation occurs at all abrupt discontinuities with
a consequent degradation in resonator Q. One approach
that has been used is the ring resonator filter [1]. However,
it has a serious drawback in that in order to avoid radia-
tion losses, the ring has to be many wavelengths in
circumference which results in closely spaced, spurious
passbands. The problems associated with radiation in the
passband have been avoided in filters designed using “non-
radiative” dielectric waveguide where the dielectric
is confined between two, parallel, closely spaced metal
planes [2]. These filters have shown good passband perfor-
mance but broad, strong stopbands may be difficult to
achieve because, at frequencies for which the spacing be-
tween the plates exceeds one half-wavelength in air, the
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guide is no longer in the “nonradiative” regime of oper-
ation.

DW gratings have well-known applications as bandstop
filters [3], [4]. For bandpass filters, they can be used in
pairs on a single guide (a type of Fabry-Perot resonator)
or in a parallel-coupled configuration. The first approach is
of limited practicality as a bandpass filter because the
stopband width is, in most cases, less than 10 percent. The
latter approach yields particularly good stopband behavior,
and we have previously discussed the design of simple
bandpass filters using parallel-coupled gratings [5]. In [5],
we also demonstrated a coupled-resonator filter which used
both single, uncoupled gratings and parallel-coupled grat-
ings, and we were able to obtain a trial design with a
Chebyshev passband along with broad, absorptive stop-
bands. However, at that time, general design theory for
such filters had not been explored. It is the purpose of this
paper to present our more recent results for filters of this
class and to present practical design procedures for such
filters. These filters appear to be best suited for narrow
bandwidth applications where broad, strong stopbands are
necessary. If broader passband bandwidths are desired,
then the use of DW bandstop filters together with a 3-dB
coupler [4] may be considered.

II. MODELING OF DW GRATINGS

In our experiments we have used image guide DW,
though doubtlessly other forms of DW could also be used
with these techniques. We formed the gratings by cutting
notches in the sides of the image guide, which was found to
be preferable when the vertically polarized lowest order
mode is used [6] (this mode would be called E}; in the
notation of [7]). Such a grating is shown schematically in
Fig. 1(a). We have found that their frequency response can
be accurately modeled, at least in the vicinity of the
stopband, with a transmission-line equivalent circuit, Fig.
1(b), in which all the line segments are specifically of the
same length. While we endeavored to make the electrical
lengths of the notched and unnotched regions of the grat-
ing approximately equal, it is not a necessary condition for
the equivalent circuit of Fig. 1(b) to apply. Discontinuity
fringing field effects are not ignored, as a measured center
frequency and an effective impedance ratio are used to
characterize a given grating. Center frequency f; is defined
as the stopband center frequency. For Fig. 1(b), it is the
frequency for which all line segments are a quarter-wave-
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Fig. 1. (a) Top view of an image-guide grating. (b) An equal-line-length
equivalent circuit for a grating such as that in (a).

length long. The grating impedance ratio is defined as
VA
r=—>1.
0

1)

That the impedance ratio is larger than one for the type of
gratings depicted in Fig. 1(a) has been confirmed by mea-
surements. The two grating parameters f; and r are de-
rived from tests made on a trial grating as we have dis-
cussed in [5]. The effects of dispersion on the frequency
response are accounted for as discussed in the next para-
graph and later in this paper. In [5] we also showed
comparisons of measured and calculated frequency re-
sponses for some gratings demonstrating the accuracy of
the model. Recently, there has also appeared completely
theoretical analyses which predict the performance of di-
electric image guide gratings [8§].

An accurate model of DW gratings must include disper-
sion effects. Our approach has been to use a measured
wave velocity at the center frequency, but the velocity is
made to vary linearly as a function of frequency with a
slope predicted by the effective dielectric constant (EDC)
method [9]. Losses have been included in our model by
using lossy transmission-lines with a loss per wavelength as
has been measured for image guide at the frequency of
interest.

Much in the same way, we model a pair of parallel-cou-
pled gratings with a coupled, equal-line-length transmis-
sion-line circuit, as in Fig. 2. We assume that the gratings
are coupled beginning from the middle of the first Z,
section. The circuit is conveniently described in terms of its
even- and odd-mode (i.e., the fields on the two gratings
have either the same or opposite polarities, respectively).
From experiments, we have learned that the effect of the
coupling is to alter the odd- and even-mode wave velocities
of the gratings while the impedances of the equivalent
circuit remain almost unchanged from their uncoupled
values except for very tight couplings. Note that this is
consistent with the observation that image guide direc-
tional couplers are of the so-called “forward coupling”
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Fig. 2. At (a) is shown a pair of parallel-coupled gratings while at (b) is
shown its equal-line-length, coupled transmission-line equivalent circuit.

type. Also, for simplicity, we use only one, average, odd- to
even-mode velocity ratio to characterize a pair of coupled
gratings, while in the actual grating, this ratio is different
for the notched and unnotched regions.

III. CHARACTERISTICS OF PARALLEL-COUPLED

GRATINGS

The two-port transfer characteristics of parallel-coupled
gratings, shown in Fig. 2(a), can be studied using the
equivalent circuit in Fig. 2(b). It was shown in [5] that this
circuit is completely described in terms of the impedances
Z¢ and Z° that one sees looking into one of the gratings
under even- and odd-mode excitation conditions, respec-
tively. If the gratings are infinitely long and if Z° and Z°
are defined in the middle of the first Z; section as in Fig.
2(b), they are the “image” impedances! of the grating and
are given by [5]

14 7)cos® — (1=
Z‘"’“’=Zo\/7( r)cos (1-r)

(1+r)cos®+(1-r)

()

where
wl
0=0°=— (3)
v
for the even mode and
wl
0=0°= > (4

for the odd-mode, where v° stands for the even-mode wave
velocity and v° stands for the odd-mode wave velocity.
When (2) is imaginary, the sign for the square root must be

1A discussion of circuit image parameters will be found in [10, ch. 3].
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Fig. 3. The parallel-coupled gratings in Fig. 2 have odd- and even-mode
stopbands located as shown above.

chosen so that the reactance versus frequency has a posi-
tive slope. Examination of the transfer function of the
coupled gratings shows that the circuit behaves as a lossless
circuit (line losses neglected) if both the even- and odd-
modes of the gratings are in their respective stopbands i.e.,
if both Z¢ and Z? as given by (2) are purely reactive. So
for the coupled gratings to behave as a lossless, reactive
circuit between ports 4 and B in Fig. 2 over a band of
frequencies, the odd- and even-mode stopbands must over-
lap as shown in Fig. 3. Each stopband has the same width
because the impedance ratio is assumed to be the same for
both modes, but they are shifted in frequency with respect
to each other because the even- and odd-modes have
different wave velocities. The fractional width of each
image stopband was derived in [5] to be
A 4 (r-1
fo 7 " (r+1) (52)
where A is the stopband width. In an actual DW grating,
dispersion will shrink the stopband bandwidth to be less
than predicted by (5a). In narrow-band cases, a more
accurate estimate can be obtained by dividing the band-
width given by (5a) by [4], [5]
By | DNy

0 df + ll df

R Xa (5b)
T _|,_ —

° f ' f f=rf
where [, and A, are the length and wavelength for the Z,
sections and /; and A, for the Z; sections, respectively.
This factor D also approximately predicts the effects of
dispersion on the bandwidth of a complete filter and will
be used for that purpose in Section V (see Sec. V, step 1).
The width of the overlap band is most conveniently ex-
pressed as the ratio of its edge frequencies and can be
shown to be

(6)

Parallel-coupled gratings, if properly designed, exhibit a
transmission resonance behavior as was explained in [5]
and [11]. They have a passband located within the overlap
band and absorptive stopbands that can be very wide and
strong. In the theoretical derivations, we have assumed that
the gratings are infinitely long but finite length gratings
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Fig. 4. An equivalent circuit that applies to the circuit of Fig. 1(b) near
the center frequency of the grating stopband as well as to the circuit of
Fig. 2(b) near the center frequency of the overlap band shown in Fig. 3.

can deliver almost the same perfofmance as will be dis-
cussed later.

IV.

It can be shown that both a single grating or a pair of
coupled gratings can be modeled by the two-resonator
equivalent circuit in Fig. 4 for frequencies in the vicinity of
the grating stopband. This property was shown to hold for
the uncoupled grating case in [12]. For the case of an
impedance ratio r larger than one, the form with series
resonators, as shown in Fig. 4, represents the grating
between the reference planes 4 and B in Fig. 1(a). The
equations giving the reactance slope parameter x and the
impedance inverter parameter K,, in terms of the imped-
ance ratio r and the number of Z; sections N are

IMPEDANCE INVERTER MODEL OF GRATINGS

K12=ZO(%)N\ (7a)
and [ . 2N]

For a general discussion and definitions of reactance slope
parameters and impedance inverters see [10, ch. 4 and ch.
8]. Equations (7a,b) have been derived by generalizing
results in [12]. (Also, here the equations have been written
for a different choice of grating reference planes.)

In [5], the circuit of Fig. 4 was shown to also apply to
coupled gratings with an impedance ratio larger than one,
and equations were derived for the parameters of the
circuit in Fig. 4. However, in [5] the formula for x required
a numerical differentiation. Here we will take a slightly
different point of view which will enable us to derive all the
necessary expressions in closed form. Consider the two
circuits shown in Fig. 5. We assume that in the circuit of
Fig. 5(a) the lines are coupled beginning from the middle
of the first Z, section. Reference planes are defined one
eighth-wavelength from the coupled lines. In the analysis
that follows, we make the simplifying assumption that the
electrical length of these A /8-lines is frequency indepen-
dent. Since these line lengths are only A /8 at f, and we
are presently interested in parameters evaluated at f;, this
should cause little error.

The question arises as to what will fix the center
frequency of the observed passband of the circuit in Fig.
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Fig. 5. An equivalent circuit for parallel-coupled gratings is shown at
(a), while at (b) is shown a simplified equivalent for parallel-coupled
gratings which applies at frequencies where the overlap-condition, shown
in Fig. 3, is satisfied.

5(a). We can try to seek the answer from its impedance
transforming properties. Use of standard circuit analysis
shows that the input impedance seen, say, at port 4 when
port B is terminated in an arbitrary load impedance Z; is

Z=

Zo( X+ X°)Zy+ Zo(Z3 + X°X°) - jZ,(Z3 — X°X°) s
Zo(Xe+ X°)Z,— Z,(Z2+ X°X°) - jzo(22 — x°x°) °

(3
where X° and X° stand for the reactances seen looking
into one of the gratings under even- and odd-mode condi-
tions, respectively. In the case of infinitely long, lossless (or
reasonably long, low-loss) gratings X¢ and X° can be
computed from (2). Note that Z¢ and Z° are purely
imaginary because at f; both modes are in their stop-
bands. The characteristic feature describing resonance in
terms of impedance transforming properties of the circuit
in Fig. 5(b) is that its input impedance is purely real at the
center frequency if the load impedance is real. By (8) we
find that for the circuit of Fig. 5(a) to behave similarly we
must require that

XeX° =72 (9)
at the center frequency. If condition (9) is imposed on (8),

it assumes a form similar to the familiar impedance-
inverter relationship

Z =2 (10)
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where K, is given by
, (X*+x°)+2z, | an
2(xe+x0)-22,7"

It can be further simplified through the use of (9) to the
form

Zy+ X°

Ky =Zo|——
12 OZO—X"

(12)

f=/o
The resonance condition (9) can also be written, through
use of (2)-(4), as
T
O =5

'—;+1
v

(13)

To derive an expression for the reactance slope parame-
ter x of the resonator in Fig. 5(b), let Z; be equal to jZ,
and find the input reactance looking into port A in both
cases. (An open circuit might seem to be a more logical
choice for the load impedance, but choosing Z; = jZ,
leads to a simpler analysis in the case of Fig. 5(a).) Then
take the derivative of the input reactance with respect to
frequency in both cases and evaluate at f;, as fixed by (9).
Comparison of the resulting expressions will then allow
one to find x. The calculations are somewhat lengthy, but
straightforward, and details are omitted here. The result is

_Zog X0 (e N o
x= 0% oS 207 o+ 3/ (8°)

]

where
B (1+7)(1—r)sin®
f(8)= [(r +1)cos®—(r—l)]2 (15)

and X°¢ and X° are obtained from (2),0° from (13) and
K, from (12), all evaluated at f,.

V. BaNDPASS FILTER DESIGN

Now we are going to illustrate the use of the foregoing
concepts in the design of a bandpass filter. Consider the
structure shown in Fig. 6(a). The overall effect of the
gratings in this structure, and the resonance that occurs
between two gratings adjacent in the same guide, is to form
a two-resonator filter. The first resonator is formed by the
resonance between gratings G, and G, spaced a multiple
of half guide wavelength apart. Its coupling to the input is
controlled by the number of notches in grating G,,. Simi-
larly, the second resonator is formed from gratings Gy, and
G, along with the line section between, and the coupling to
the output is controlled by the number of notches in
grating G,;. The coupling between the two resonators is
controlled by the spacing between gratings G; and G,. In
the passband of the filter and in the immediately adjacent
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Fig. 6. (a) A two-resonator bandpass filter formed using DW gratings.
(b) An equivalent circuit for the filter at (a) for frequencies in and near
its passband.

portions of the filter stopbands, the gratings are reflecting
strongly and very little power reaches the absorptive loads
at the outer ends of the coupled gratings. Over this
frequency band (where the gratings are in their stopband)
the filter behaves much like a conventional reflection-type
filter. Outside of that frequency range (where the gratings
are in their passbands) the coupled gratings provide broad,
absorptive stopbands for the overall filter in a manner as
was discussed in [5] and [11]. The distributed loads at the
outer ends of the coupled gratings are to absorb any power
transmitted through the gratings with as low reflections as
possible. On the other hand, the number of notches in the
portion of gratings G, and G, which have no deliberately
introduced losses are large enough so that very little power
is lost to the grating loads in the passband of the filter. In
this way, the performance of finite length parallel-coupled
gratings differs very little from that of infinitely long
gratings.

If the impedance inverter models of the coupled and
uncoupled gratings are applied to the structure in Fig. 6(a),
it is seen that in the vicinity of its center frequency it can
be modeled as shown in Fig. 6(b), where the series L-C
elements and the line sections m, half-wavelengths long
are all resonant at the same frequency f;. The total reac-
tance slope x, and x, of each resonator in Fig. 6(b) is the
sum of the reactance slopes of its constituents. In this
model, the role of the connecting waveguide between the
gratings is simply to add

$n= iz Zo (16)
to the total reactance slope, where m; is the number of half
wavelengths in the conneciing guide. The circuit in Fig.
6(b) is in a standard form to which direct-coupled-reso-
nator filter theory [10, ch. 8] is readily applied permitting
us to synthesize passband shapes such as Chebyshev or
maximally flat characteristics. In doing this, the resonator
element on the far left with slope parameter x,; and the
resonator element on the far right with parameter x,; are
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ignored. This is justified because x;, and x,, are relatively
small.

Before going into a detailed design procedure, we make
some general comments. First, it is often desirable to
design filters such as in Fig. 6 so that the resulting struc-
ture will be symmetrical. This will be feasible when using
typical Chebyshev or maximally flat prototypes which are
symmetric or antimetric (see {10, Sec. 4.05]). Therefore, we
assume that gratings G, and G, are identical. Second, in
all the design examples we have considered, we have found
that it is simplest to have the same amount of frequency
selectivity in each resonator. Therefore, the filter will be
designed so that the total reactance slope parameter of
both resonators is the same. Finally, we assume that the
designer has appropriate data available so that the effective
impedance ratio of the gratings to be used and their center
frequency are known. Means for getting such data were
discussed in [5].

For convenience, some of the equations from [10] are
repeated here. In [10] the filter designs are derived from
normalized low-pass prototypes with element values
80" " *» 8,41 and low-pass cutoff frequency w}. With refer-
ence to Fig. 6(b), we have

R xw
Ky= \/ - 1, =Ky (173)
80811
w o [Xx
K=y 22 (175)
Wy} 8182

where w is the fractional bandwidth of the filter and
R, =Z, in the case of Fig. 6(b). The design proceeds as
follows:

1) Select a low-pass prototype [10, ch. 4] and find the
bandwidth that should be used in the design by multiply-
ing the desired filter bandwidth by D, given by (5b), in
order to compensate for dispersion.

2) Choose the overlap bandwidth of the stopbands of
the coupled gratings. It should be larger than the design
bandwidth of the filter because the equivalent circuit of
Fig. 4 applies only at frequencies where the even- and
odd-mode stopbands overlap as shown in Fig. 3. Therefore,
the overlap band should include the passband and a small
part of the filter stopband on each side. On the other hand,
too large an overlap bandwidth implies a smaller odd- to
even-mode velocity ratio, hence larger spacing between the
gratings and looser coupling. The end result of this is that
the bandwidth desired for the filter may not be realizable.
More will be said about this later. For the overlap band-
width chosen, determine f,/f, (see Fig. 3) and solve for
the v°/v° required by use of (6).

3) Now we have fixed the parameters of the coupled
gratings. Use (12) and (14) to find the impedance inverter
parameter of the coupled gratings K, and the associated
reactance slope parameter x,,.

4) Insert the value of K;, into (17b) and solve for x;
and x, assuming they are equal.

5) Insert x; from above into (17a) and find what is the
required value of K.
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6) Use (7a) to find what is the number of notches
required in the grating Gy, by finding the integer value of
N which will give K; closest to the value desired.

7) Use (7b) to find the reactance slope parameter x,, of
the grating G;.

8) The total reactance slope of each resonator is
(18a)

aT
X=X, t X+ ms—z—Z0

T
Xy =X1= X5+ Xq3 +ms-2—ZO (18b)
where m is the number of half wavelengths in the connect-
ing waveguide in each resonator. The design is completed
by choosing an integer value for m_ such that x; is closest
to the value that the design calls for in step 4.

If the resulting value for m or the number of notches is
not convenient, then the procedure may be repeated for a
different choice of overlap bandwidth or a different imped-
ance ratio, if that is available. Although presented here
only for the case of a two-resonator filter, as will be
discussed later, the procedure is applicable to the design of
four- or six,- etc., resonator filters.

So far we have neglected the additional resonators to the
left of K, and to the right of K,; in Fig. 6(b). Often,
ignoring them completely is a good approximation because
they are so heavily loaded by the input and output
terminations that their contribution to the overall frequency
response is indeed negligible, Also, in most cases, the
overall frequency response tends to be somewhat distorted
anyway because of the various approximations involved. In
particular,we have found that the equal-ripple bandwidth
is almost always a little larger than the design bandwidth,
and the ripple size cannot always be exactly as chosen. One
notable reason for this is that the parameters of the grat-
ings can only be adjusted in discrete steps (the number of
notches in a grating has, of course, to be an integer).

VI

As was implied earlier, there are limitations to the maxi-
mum passband bandwidth that is available in this kind of
filter. The first limitation comes from the fact that the
equivalent circuit of Fig. 4 applies only at frequencies
where the stopbands of the coupled gratings overlap as
shown in Fig. 3. The overlap bandwidth can be increased
by decreasing the odd- to even-mode velocity ratio, but this
implies larger Spacing between the gratings and hence
looser coupling. In the limit, the odd- and even-mode
stopbands can completely overlap each other, but then, of
course, there is no coupling at all. Therefore, for a given
grating impedance ratio r, there is some value of odd- to
even-mode velocity ratio (i.e., a spacing between the grat-
ings) for which there is the maximum amount of potential
filter bandwidth available. If, in the design procedure
stated before, the overlap bandwidth has been specified to
be too large and therefore the coupling between the grat-
ings is too loose for a desired filter bandwidth, it will
manifest itself in that in step 8 of the procedure, the
required left-hand side of (18a,b) will be smaller than the

BANDWIDTH LIMITATIONS
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Fig. 7. The maximum available passband width of the filter is shown as
a function of the ratio f;, /f; of the edge frequencies of the overlap
band (see Fig. 3). In region I of this graph, the available filter bandwidth
is limited by the width of the overlap band while in region II the
coupling between the parallel-coupled gratings becomes so loose that it
limits the amount of filter bandwidth that can be realized.

right-hand side even if we set m =0. If at this point
reducing the overlap bandwidth would make that band-
width to be smaller than (or almost equal to) the desired
passband width of the filter, then the only recourse avail-
able is to use a larger grating impedance ratio.

No general statements about the maximum bandwidth
or the optimum odd- to even-mode velocity ratio for a
given impedance ratio can be made because the choice of
these parameters is influenced by the low-pass prototype
chosen. In Fig, 7, we illustrate the bandwidth limitations
for the case of an impedance ratio r =1.07 while using a
0.5-dB ripple, four-resonator, Chebyshev low-pass proto-
type. Shown there is the maximum available bandwidth of
the filter as a function of the ratio of the edge frequencies
of the overlap band with the assumption that in the limit
we can take m = 0 in (18a,b), which may lead to impracti-
cal structures but serves to indicate a theoretical limit.

VII. DESIGN EXAMPLE AND EXPERIMENTAL

RESULTS

Two- and four-resonator filters based on the principles
presented above have been built and tested. Experimental
results for a trial two-resonator design were presented in
[5]. In [5] we also proposed a three-resonator version in
which all three resonators were placed side-by-side to
provide coupling between them. Such a filter was subse-
quently designed and tested, but the experimental results
did not give as strong stopbands as we had expected. In
order to achieve as strong stopbands as possible, we con-
cluded it is preferable to use structures having directly
connected grating couplings alternating with parallel-grat-
ing couplings, as in the four-resonator structure in Fig, 8.
Note that this structure uses three directly connected cou-
pling gratings Gy, G,;, and G5, and two sets of parallel-
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Fig. 8. A four-resonator filter formed using DW gratings.

coupled gratings. Since the decibel attenuations due to the
absorptive stopbands of the parallel-coupled gratings
(terminated in loads) add, the potential stopband attenua-
tion of the filter is very high.

A trial four-resonator filter was designed using a design
procedure similar to the one presented above for the two-
resonator case. In an earlier work [5], we had studied DW
image guide gratings using Rexolite 1422 having &, = 2.55
and had found that for some convenient dimensions the
effective impedance ratio was 1.07. We chose to use those
gratings for this design. A 0.5-db Chebyshev ripple low-pass
prototype was chosen. The prototype element values are
[10, ch. 4]

go=1 g =16703 g,=1.1926
g;=2.3661 g,=0.8419 g;=1.9841

with w) =1. The design bandwidth was set at 1.5 percent
without dispersion correction. Computing the factor D
given by (5b), we found D equals 1.37 for the dimensions
of our gratings at the center frequency, so the actual
bandwidth of the filter was expected to be about 1.1
percent. The derivatives in (5b) were found by use of the
EDC method [9]. The ratio of the edge frequencies of the
overlap band of the coupled gratings was chosen to be
1.02. Then the required v°/v° is found to be 1.024. By (13)
©° is 1.552 at the center frequency and by (2) X° is
—1.871Z,. The impedance-inverter parameter of the cou-
pled gratings is by (12) K;,=0.3035Z,= K, and the
associated reactance slope parameter is from (14) x,, =
15.20Z, = x4,. Then from step 4 we get x; =x, =x;=Xx,
= 28.56Z,. Following step 5 we compute K, = 0.5064Z,
= K,s and K,;=0.2550Z,. Using (7a), the closest integer
values of N yielding the required inverter parameters are
Ny, = N,s =10 for gratings Gy; and G5 and N,; =20 for
grating G,;. The corresponding reactance slopes are from
(Tb) xg, = X45=9.106Z, and x,;=11.26Z,. Finally we
can conclude that we should use m =3 half-wavelengths
of connecting guide between gratings G; and G; and
m =1 half-wavelengths between G, and Gy,.

In Fig. 9, we show a calculated frequency response for
the design presented above. In Fig. 9, dispersion and line
losses have been taken into account. The response was
calculated assuming a line loss of 0.0227 dB per guide
wavelength which was based on loss measurements of
image guide at the frequency of interest. Bandwidth is
difficult to define for the response shown because the
shape of the passband is rounded due to losses. If the same
response is calculated for the lossless case, equal-ripple
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Fig. 9. The solid line shows a computed response for a four-resonator
DW filter as shown in Fig. 8 with distributed loads at the outer ends of
the parallel-coupled gratings, while the dashed line shows the corre-
sponding response with infinite, parallel-coupled gratings.
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Fig. 10. A measured response for a four-resonator filter as in Figs. 8
and 9. The dashed line indicates the loss due the mode launchers and the
lengthy input and output guides that were used.

bandwidth is found to be 1.2 percent including the effects
of dispersion. In Fig. 9, the dashed line shows the stopband
response for the case of the coupled gratings being in-
finitely long while the solid line shows the corresponding
response with coupled gratings having 68 notches. Twenty-
one of these notches belong to the distributed load. In
these calculations the loss in the distributed load was
linearly increased up to 2.3 dB per guide wavelength, and
then the last line section was terminated in a lumped Z,
load.

A corresponding experimental filter was fabricated, and
its measured frequency response is shown in Fig. 10. The
test set up used some fairly lengthy input and output
guides to the filter, and the dashed line in Fig. 10 indicates
the loss due to these lines and mode launchers. The mid-
band loss of the filter alone is about 3.1 dB which is
somewhat higher than expected. We believe this is due to
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. radiation from some relatively sharp bends used in this
filter. In general we have found that sharp bends would be
desirable in order to separate the coupled gratings as
rapidly as possible at their input end, but bends with a

small radius of curvature tend to radiate, as is well known. -

To get the response shown in Fig. 10, the filter was fine
tuned by adjusting the spacing between the coupled grat-
ings to realize the required v°/v¢ and small pieces of
dielectric were placed near the center of the resonators to

bring them all to resonance at the same frequency.
Measurements were made of the stopband up as far as

26.5 GHz. In the 12- to 18-GHz range, except for two
frequencies, the attenuation was in excess of 55 dB pro-
vided that metal or absorbing dividers were put between
the input and output guides and the adjacent gratings.
These walls were found to be desirable to suppress stray
coupling between gratings, e.g., between G and G,; in
Fig. 8. At the two frequencies mentioned, the attenuation
dropped to 37 and 45 dB. It was found experimentally that
the attenuation at these two weak points could be in-
creased above 55 dB if several pieces of fine metal wire
were placed transverse to the guide axis on top of the G,
grating in Fig. 8. These wires did not affect the rest of the
response. We believe the observed weak points and their
disappearance with the wires is due to higher-order modes
of the DW. In the 18- to 26.5-GHz range, attenuation was
in excess of 55 dB except for one frequency where it
dropped to 47 dB, again provided that the dividers were in
place. This 47 dB could not be further suppressed with the
wires. We also made tests with no measures taken to
suppress stray couplings or higher order modes. Even then
the typical attenuation was 50 dB in the 12- to 18-GHz
range and 40 dB in the 18- to 26.5-GHz range, with a
37-dB minimum stopband attenuation in the full 8- to
26.5-GHz range measured, so the stopband performance of
this type of filters is inherently good.

VIIL

Techniques for the design of bandpass filters using di-
electric waveguide gratings have been presented. These
filters use both uncoupled gratings and parallel-coupled
configurations of gratings. Simple transmission-line equiv-
alent circuits have been used to analyze these structures. It
was shown how direct-coupled-resonator filter theory can
be applied to design two-, four-, six-, etc., resonator-filters
which have Chebyshev, maximally flat, or other passband
characteristics. Meanwhile, the use of gratings in a
parallel-coupled configuration gives these filters their broad,
strong stopband characteristics. These filters are capable of
high stopband attenuations over a broad band of frequen-
cies, and the attenuation is absorptive over most of the
stopband which should be an additional advantage. The
passband width is limited to less than perhaps, a few
percent in most cases, and the reasons for this were dis-
cussed. Experimental results for a four-resonator filter were
presented and they agreed well with theoretical calcula-
tions. Experiments were carried out using dielectric image
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guide, but the design technique itself is applicable to other
forms of waveguides as well.
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