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Abstract —Techniques for the design of narrow-band (of the order of a

percent or so), bandpass filters using dielectric wavegnide gratings are

presented. These filters use both single, uncoupled gratings and parallel-

coupled configurations of gratings to form multiresonator bandpass filter

structures. Transmission-line equivalent circuits are nsed to model the

dielectric wavegnide gratings. Using this model, it is then shown how

direct-coupled-resonator theory can be applied to such filter structures to

synthesize a prescribed passband having Chebyshev or maximafly flat

characteristic. On the other hand, the parallel-coupled gratings give these

filters broad and strong, absorptive stopbands, as is explained. Experimen-

tal results are presented which show good agreement between theoretical

and measured results.

I. INTRODUCTION

D IELECTRIC WAVEGUIDES are potentially attrac-

tive for use in millimeter-wave and optical integrated

circuits. Over the years a number of different configura-

tions of dielectric waveguide (DW) have been proposed,

and their waveguiding properties have been studied. How-
ever, so far relatively few practical techniques have been

established for the design of components using DW, espe-

cially filters. The purpose of this study has been to in-

vestigate means for bandpass filter design using DW grat-

ings. The design of bandpass filters in DW has been

hampered by the fact that in most cases, the energy guided

by a DW is loosely bound to the guide, and therefore

conventional forms of resonators usually cannot be used

because radiation occurs at all abrupt discontinuities with

a consequent degradation in resonator Q. One approach

that has been used is the ring resonator filter [1]. However,

it has a serious drawback in that in order to avoid radia-

tion losses, the ring has to be many wavelengths in

circumference which results in closely spaced, spurious

passbands. The problems associated with radiation in the

passband have been avoided in filters designed using “non-

radiative” dielectric waveguide where the dielectric

is confined between two, parallel, closely spaced metal

planes [2]. These filters have shown good passband perfor-

mance but broad, strong stopbands may be difficult to

achieve because, at frequencies for which the spacing be-

tween the plates exceeds one half-wavelength in air, the
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guide is no longer in the “ nonradiative” regime of oper-

ation.

DW gratings have well-known applications as bandstop

filters [3], [4]. For bandpass filters, they can be used in

pairs on a single guide (a type of Fabry-Perot resonator)

or in a parallel-coupled configuration. The first approach is

of limited practicality as a bandpass filter because the

stopband width is, in most cases, less than 10 percent. The

latter approach yields particularly good stopband behavior,

and we have previously discussed the design of simple

bandpass filters using parallel-coupled gratings [5]. In [5],

we also demonstrated a coupled-resonator filter which used

both single, uncoupled gratings and parallel-coupled grat-

ings, and we were able to obtain a trial design with a

Chebyshev passband along with broad, absorptive stop-

bands. However, at that time, general design theory for

such filters had not been explored. It is the purpose of this

paper to present our more recent results for filters c)f this

class and to present practical design procedures for such

filters. These filters appear to be best suited for narrow

bandwidth applications where broad, strong stopbands are

necessary. If broader passband bandwidths are desired,

then the use of DW bandstop filters together with a 3-dB

coupler [4] may be considered.

II. MODELING OF DW GRATINGS

In our experiments we have used image guide DW,

though doubtlessly other forms of DW could also bc used

with these techniques. We formed the gratings by cutting

notches in the sides of the image guide, which was found to

be preferable when the vertically polarized lowest order

mode is used [6] (this mode would be called E/l in the

notation of [7]). Such a grating is shown schematically in

Fig. l(a). We have found that their frequency response can

be accurately modeled, at least in the vicinity of the

stopband, with a transmission-line equivalent circuit, Fig.

l(b), in which all the line segments are specifically of the

same length. While we endeavored to make the electrical

lengths of the notched and unnotched regions of the grat-

ing approximately equal, it is not a necessary condition for

the equivalent circuit of Fig. l(b) to apply. Discontinuity
fringing field effects are not ignored, as a measured center

frequency_ and an effective impedance ratio are used to

characterize a given grating. Center frequency ~~ is defined

as the stopband center frequency. For Fig. l(b), it is the

frequency for which all line segments are a quarter-wave-
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Fig. 1. (a) Top view of an image-guide grating. (b) An equal-line-length
equivalent circuit for a grating such as that in (a).

length long. The grating impedance ratio is defined as

z,
r=y>l. (1)

~o

That the impedance ratio is larger than one for the type of
gratings depicted in Fig. l(a) has been confirmed by mea-
surements. The two grating parameters ~; and r are de-
rived from tests made on a trial grating as we have dis-
cussed in [5]. The effects of dispersion on the frequency
response are accounted for as discussed in the next para-
graph and later in this paper. In [5] we also showed
comparisons of measured and calculated frequency re-
sponses for some gratings demonstrating the accuracy of
the model. Recently, there has also appeared completely
theoretical analyses which predict the performance of di-
electric image guide gratings [8].

An accurate model of DW gratings must include disper-
sion effects. Our approach has been to use a measured
wave velocity at the center frequency, but the velocity is
made to vary linearly as a function of frequency with a
slope predicted by the effective dielectric constant (EDC)
method [9]. Losses have been included in our model by
using lossy transmission-lines with a loss per wavelength as
has been measured for image guide at the frequency of
interest.

Much in the same way, we model a pair of parallel-cou-
pled gratings with a coupled, equal-line-length transmiss-
ion-line circuit, as in Fig. 2. We assume that the gratings
are coupled beginning from the middle of the first Z.
section. The circuit is conveniently described in terms of its
even- and odd-mode (i.e., the fields on the two gratings
have either the same or opposite polarities, respectively).
From experiments, we have learned that the effect of the
coupling is to alter the odd- and even-mode wave velocities
of the gratings while the impedances of the equivalent
circuit remain almost unchanged from their uncoupled
values except for very tight couplings. Note that this is
consistent with the observation that image guide direc-
tional couplers are of the so-called “forward coupling”
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Fig. 2. At (a) is shown a pair of paraflel-coupled gratings while at (b) is
shown its equat-line-length, coupled transmission-line equivalent circuit.

type. Also, for simplicity, we use only one, average, odd- to
even-mode velocity ratio to characterize a pair of coupled
gratings, while in the actual grating, this ratio is different
for the notched and unnotched regions.

III. CHARACTERISTICSOF PARALLEL-COUPLED

GRATINGS

The two-port transfer characteristics of parallel-coupled
gratings, shown in Fig. 2(a), can be studied using the
equivalent circuit in Fig. 2(b). It was shown in [5] that this
circuit is completely described in terms of the impedances
Z’ and Z“ that one sees looking into one of the gratings
under even- and odd-mode excitation conditions, respec-
tively. If the gratings are infinitely long and if Z’ and ZO
are defined in the middle of the first Z. section as in Fig.
2(b), they are the “image” impedances of the grating and
are given by [5]

-Zom ‘2)

zeOro _

where

for the even mode and

m“=~
U“

(3)

(4)

for the odd-mode, where u’ stands for the even-mode wave
velocity and u“ stands for the odd-mode wave velocity.
When (2) is imaginary, the sign for the square root must be

1A discussion of circuit image parameters will be found in [10, ch. 3].
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Fig. 3. The parallel-coupled gratings in Fig. 2 have odd- and even-mode
stopbands located as shown above.

chosen so that the reactance versus frequency has a posi-

tive slope. Examination of the transfer function of the

coupled gratings shows that the circuit behaves as a lossless

circuit (line losses neglected) if both the even- and odd-

modes of the gratings are in their respective stopbands i.e.,

if both Ze and .ZO as given by (2) are purely reactive. So

for the coupled gratings to behave as a lossless, reactive

circuit between ports A and B in Fig. 2 over a band of

frequencies, the odd- and even-mode stopbands must over-

lap as shown in Fig. 3. Each stopband has the same width

because the impedance ratio is assumed to be the same for

both modes, but they are shifted in frequency with respect

to each other because the even- and odd-modes have

different wave velocities. The fractional width of each

image stopband was derived in [5] to be

A 4_1r-1

(–)~=;s’n r+l
(5a)

where A is the stopband width. In an actual DW grating,

dispersion will shrink the stopband bandwidth to be less

than predicted by (5a). In narrow-band cases, a more

accurate estimate can be obtained by dividing the band-

width given by (5a) by [4], [5]

where 10 and Ago are the length and wavelength for the 20

sections and /l and A ~, for the ZI sections, respectively.

This factor D also approximately predicts the effects of

dispersion on the bandwidth of a complete filter and will

be used for that purpose in Section V (see Sec. V, step 1).

The width of the overlap band is most conveniently ex-

pressed as the ratio of its edge frequencies and can be

shown to be

P COS-l(EI
Ju \l+r~

()

z= qcos., e “

Ve r+l

(6)

Parallel-coupled gratings, if properly designed, exhibit a

transmission resonance behavior as was explained in [5]

and [11]. They have a passband located within the overlap

band and absorptive stopbands that can be very wide and

strong. In the theoretical derivations, we have assumed that

the gratings are infinitely long but finite length gratings

m m

Fig. 4. An equivalent circuit that applies to the circuit of Fig. l(b) near

the center frequency of the grating stopband as well as to the circuit of
Fig. 2(b) near the center frequency of the overlap band shown in Fig. 3.

can deliver almost the same performance as will be dis-

cussed later.

IV. IMPEDANCE INVERTER MODEL OF GRATINGS

It can be shown that both a single grating or a pair of

coupled gratings can be modeled by the two-resonator

equivalent circuit in Fig. 4 for frequencies in the vicinity of

the grating stopband. This property was shown to hold for

the uncou@ed grating case in [12]. For the case of an

impedance ratio r larger than one, the form with series

resonators, as shown in Fig. 4, represents the grating

between the reference planes A and B in Fig. l(a). The

equations giving the reactance slope parameter x and the

impedance inverter parameter Klz in terms of the imped-

ance ratio r and the number of ZI sections N are

()K12=Z0 A ‘.
r

(7a)

and

[011 2N
=r— —

r

‘=20 4(r–1) “
(7b)

For a general discussion and definitions of reactance slope

parameters and impedance inverters see [10, ch. 4 and ch.

8]. Equations (7a, b) have been derived by generalizing

results in [12]. (Also, here the equations have been written

for a different choice of grating reference planes.)

In [5], the circuit of Fig. 4 was shown to also apply to

coupled gratings with an impedance ratio larger than one,

and equations were derived for the parameters of the

circuit in Fig. 4. However, in [5] the formula for x required

a numerical. differentiation. Here we will take a slightly

different point of view which will enable us to derive all the

necessary expressions in closed form. Consider the two

circuits shown in Fig. 5. We assume that in the circuit of

Fig. 5(a) the lines are coupled beginning from the middle

of the first 20 section. Reference planes are defirmd one

eighth-wavelength from the coupled lines. In the analysis

that follows, we make the simplifying assumption that the

electrical length of these A/8-lines is frequency indepen-

dent. Since these line lengths are only A/8 at f. and we

are presently interested in parameters evaluated at ~., this

should cause little error.

The question arises as to what will fix the center

frequency of the observed passband of the circuit in Fig.
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Fig. 5. An equivalent circuit for parallel-coupled gratings is shown at
(al while at (b) is shown a simrdified equivalent for ~arallel-courJed. . .
gratings which applies at frequencies wher; the overlap-;ondition, sh;wn
in Fig. 3, is satisfied.

5(a). We can try to seek the answer from its impedance
transforming properties. Use of standard circuit analysis
shows that the input impedance seen, say, at port A when
port B is terminated in an arbitrary load impedance Z~ is

Z,n=
Zo(x’+ x“)zo+zo(z; +x’x”)–jzL(z; – X’X”)—
Zo(x’+ X“)ZL–zL(zj +X’x”)–jzo(z;–X’X”)‘0

(8)

where X’ and X“ stand for the reactance seen looking
into one of the gratings under even- and odd-mode condi-
tions, respectively. In the case of infinitely long, lossless (or
reasonably long, low-loss) gratings X’ and X“ can be
computed from (2). Note that Z’ and 2° are purely
imaginary because at ~0 both modes are in their stop-
bands. The characteristic feature describing resonance in
terms of impedance transforming properties of the circuit
in Fig. 5(b) is that its input impedance is purely real at the
center frequency if the load impedance is real. By (8) we
find that for the circuit of Fig. 5(a) to behave similarly we
must require that

Xex”=z: (9)

at the center frequency. If condition (9) is imposed on (8),
it assumes a form similar to the familiar impedance-
inverter relationship

K&
Zin=—ZL (lo)

where K12 is given by

(11)
K, (X’+ X”)+2Z0 ,

12= (xe+x~)_2Zozo”

It can be further simplified through the use of (9) to the
form

20+x“
K12 = 20 20– X“~=fo”

The resonance condition (9) can also be
use of (2)–(4), as

?r
@Olf=fo– ~o .

.—

—+1
v’

(12)

written, through

(13)

To derive an expression for the reactance slope parame-
ter x of the resonator in Fig. 5(b), let Z~ be equal to jZo
dnd find the input reactance looking into port A in both
cases. (An open circuit might seem to be a more logical
choice for the load impedance, but choosing Z~ = jZo
leads to a simpler analysis in the case of Fig. 5(a).) Then
take the derivative of the input reactance with respect to
frequency in both cases and evaluate at ~. as fixed by (9).
Comparison of the resulting expressions will then allow
one to find x. The calculations are somewhat lengthy, but
straightforward, and details are omitted here. The result is

\~o/

(14)

where

(l+r)(l-r)sin@

‘(e)= [(r+l)cose-(r-1)]2
(15)

and X’ and X“ are obtained from (2), @0 from (13) and
K12 from (12), all evaluated at ~o.

V. BANDPASS FILTER DESIGN

Now we are going to illustrate the use of the foregoing
concepts in the design of a bandpass filter. Consider the
structure shown in Fig. 6(a). The overall effect of the
gratings in this structure, and the resonance that occurs
between two gratings adjacent in the same guide, is to form
a two-resonator filter. The first resonator is formed by the
resonance between gratings Gol and G1 spaced a multiple
of half guide wavelength apart. Its coupling to the input is
controlled by the number of notches in grating GO1.Simil-
arly, the second resonator is formed from gratings G2~and
G2 along with the line section between, and the coupling to
the output is controlled by the number of notches in
grating G2~. The coupling between the two resonators is
controlled by the spacing between gratings G1 and G2. In
the passband of the filter and in the immediately adjacent
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Fig. 6. (a) A two-resonator bandpass filter formed using DW gratings.
(b) An equivalent circuit for the filter at (a) for frequencies in and near
its passband.

portions of the filter stopbands, the gratings are reflecting

strongly and very little power reaches the absorptive loads

at the outer ends of the coupled gratings. Over this

frequency band (where the gratings are in their stopband)

the filter behaves much like a conventional reflection-type

filter. Outside of that frequency range (where the gratings

are in their passbands) the coupled gratings provide broad,

absorptive stopbands for the overall filter in a manner as

was discussed in [5] and [11]. The distributed loads at the

outer ends of the coupled gratings are to absorb any power

transmitted through the gratings with as low reflections as

possible. On the other hand, the number of notches in the

portion of gratings GI and G2 which have no deliberately

introduced losses are large enough so that very little power

is lost to the grating loads in the passband of the filter. In

this way, the performance of finite length parallel-coupled

gratings differs very little from that of infinitely long

gratings.

If the impedanc& inverter models of the coupled and

uncoupled gratings are applied to the structure in Fig. 6(a),

it is seen that in the vicinity of its center frequency it can

be modeled as shown in Fig. 6(b), where the series L-C

elements and the line sections m, half-wavelengths long

are all resonant at the same frequency & The total reac-

tance slope xl and Xz of each resonator in Fig. 6(b) is the

sum of the reactance slopes of its constituents. In this

model, the role of the connecting waveguide between the

gratings is simply to add

(16)

to the total reactance slope, where m, is the number of half
wavelengths in the connecting guide. The circuit in Fig.

6(b) is in a standard form to which direct-coupled-reso-

nator filter theory [10, ch. 8] is readily applied permitting

us to synthesize passband shapes such as Chebyshev or

maximally flat characteristics. In doing this, the resonator

element on the far left with slope parameter Xol and the

resonator element on the far right with parameter x 23 are

ignored. This is justified because Xol and X23 are relatively

small.

Before going into a detailed design procedure, we make

some general comments. First, it is often desirable to

design filters such as in Fig. 6 so that the resulting struc-

ture will be symmetrical. This will be feasible when using

typical Chebyshev or maximally flat prototypes which are

symmetric or antimetric (see [10, Sec. 4.05]). Therefore, we

assume that gratings Gol and G23 are identical. Second, in

all the design examples we have considered, we have found

that it is simplest to have the same amount of frequency

selectivity in each resonator. Therefore, the filter will be

designed so that the total reactance slope parameter of

both resonators is the same. Finally, we assume that the

designer has appropriate data available so that the ef fective

impedance ratio of the gratings to be used and their center

frequency are known. Means for getting such data were

discussed in [5].

For convenience, some of the equations from [10] are

repeated here. In [10] the filter designs are derived from

normalized low-pass prototypes with element values

go,”””, g.+ ~ and low-pass cutoff frequency LOi. With refer-

ence to Fig. 6(b), we have

(17a)

(17b)

where w is the fractional bandwidth of the filter and

R~ = Z. in the case of Fig. 6(b). The design proceeds as

follows:

1) Select a low-pass prototype [10, ch. 4] and find the

bandwidth that should be used in the design by multiply-

ing the desired filter bandwidth by D, given by (5b), in

order to compensate for dispersion.

2) Choose the overlap bandwidth of the stopbands of

the coupled gratings. It should be larger than the design

bandwidth of the filter because the equivalent circuit of

Fig. 4 applies only at frequencies where the even- and

odd-mode stopbands overlap as shown in Fig. 3. Therefore,

the overlap band should include the passband and a small

part of the filter stopband on each side. On the other hand,

too large an overlap bandwidth implies a smaller odd- to

even-mode velocity ratio, hence larger spacing betw~en the

gratings and looser coupling. The end result of this is that

the bandwidth desired for the filter may not be realizable.

More will be said about this later. For the overlap band-

width chosen, determine ~u/~~ (see Fig. 3) and solve for

the uO/ue required by use of (6).

3) Now we have fixed the parameters of the coupled
gratings. Use (12) and (14) to find the impedance inverter

parameter of the coupled gratings K12 and the associated

reactance slope parameter x12.

4) Insert the value of Klz into (17b) and solve for xl

and X2 assuming they are equal.

5) Insert xl from above into (17a) and find what is the

required value of Kol.
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6) Use (7a) to find what is the number of notches

required in the grating Gol by finding the integer value of

N which will give KO1 closest to the value desired.

7) Use (7b) to find the reactance slope parameter XOl of

the grating GO1.

8) The total reactance slope of each resonator is

Xl=xlz + XOI+ m. ; Z. (18a)

x1=x1 =x1z+xz3+m, ; Z. (18b)

where m, is the number of half wavelengths in the connect-

ing waveguide in each resonator. The design is completed

by choosing an integer value for m, such that xl is closest

to the value that the design calls for in step 4.

If the resulting value for m, or the number of notches is

not convenient, then the procedure may be repeated for a

different choice of overlap bandwidth or a different imped-

ance ratio, if that is available. Although presented here

only for the case of a two-resonator filter, as will be

discussed later, the procedure is applicable to the design of

four- or six,- etc., resonator filters.

So far we have neglected the additional resonators to the

left of KOI and to the right of KZJ in Fig. 6(b). Often,

ignoring them completely is a good approximation because

they are so heavily loaded by the input and output

terminations that their contribution to the overall frequency

response is indeed negligible. Also, in most cases, the

overall frequency response tends to be somewhat distorted

anyway because of the various approximations involved. In

particular,we have found that the equal-ripple bandwidth

is almost always a little larger than the design bandwidth,

and the ripple size cannot always be exactly as chosen. One

notable reason for this is that the parameters of the grat-

ings can only be adjusted in discrete steps (the number of

notches in a grating has, of course, to be an integer).

VI. BANDWIDTH LIMITATIONS

As was implied earlier, there are limitations to the maxi-

mum passband bandwidth that is available in this kind of

filter. The first limitation comes from the fact that the

equivalent circuit of Fig. 4 applies only at frequencies

where the stopbands of the coupled gratings overlap as

shown in Fig. 3. The overlap bandwidth can be increased

by decreasing the odd-to even-mode velocity ratio, but this
implies larger spacing between the gratings and hence

looser coupling. In the limit, the odd- and even-mode

stopbands can completely overlap each other, but then, of

course, there is no coupling at all. Therefore, for a given

grating impedance ratio r, there is some value of odd- to

even-mode velocity ratio (i.e., a spacing between the grat-
ings) for which there is the maximum amount of potential

filter bandwidth available. If, in the design procedure

stated before, the overlap bandwidth has been specified to

be too large and therefore the coupling between the grat-

ings is too loose for a desired filter bandwidth, it will

manifest itself in that in step 8 of the procedure, the

required left-hand side of (18a, b) will be smaller than the

!0”03kiiiiiT

1
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fu/fL

Fig. 7. The maximum available passband width of the falter is shown as

a function of the ratio fu\fL of the edge frequencies of the overlap
band (see Fig. 3). In region I of this graph, the available filter bandwidth
is limited by the width of the overlap band while in region II the
coupling between the paratlel-coupled gratings becomes so loose that it

limits the amount of filter bandwidth that can be realized.

right-hand side even if we set m, = O. If at this point

reducing the overlap bandwidth would make that band-

width to be smaller than (or almost equal to) the desired

passband width of the filter, then the only recourse avail-

able is to use a larger grating impedance ratio.

No generaI statements about the maximum bandwidth

or the optimum odd- to even-mode velocity ratio for a

given impedance ratio can be made because the choice of

these parameters is influenced by the low-pass prototype

chosen. In Fig. 7, we illustrate the bandwidth limitations

for the case of an impedance ratio r = 1.07 while using a

0.5-dB ripple, four-resonator, Chebyshev low-pass proto-

type. Shown there is the maximum available bandwidth of

the filter as a function of the ratio of the edge frequencies

of the overlap band with the assumption that in the limit

we can take m ~= O in (18a, b), which may lead to impracti-

cal structures but serves to indicate a theoretical limit.

VII. DESIGN EXAMPLE AND EXPERIMENTAIL

RESULTS

Two- and four-resonator filters based on the principles
presented above have been built and tested. Experimental

results for a trial two-resonator design were presented in

[5]. In [5] we also proposed a three-resonator version in

which all three resonators were placed side-by-side to

provide coupling between them. Such a filter was subse-

quently designed and tested, but the experimental results

did not give as strong stopbands as we had expected. In

order to achieve as strong stopbands as possible, we con-

cluded it is preferable to use structures having directly

connected grating couplings alternating with parallel-grat-

ing couplings, as in the four-resonator structure in Fig. 8.

Note that this structure uses three directly connected cou-

pling gratings GOI, G23, and G45, and two sets of parallel-
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Fig. 8. A four-resonator filter formed using DW gratings.

coupled gratings. Since the decibel attenuations due to the

absorptive stopbands of the parallel-coupled gratings

(terminated in loads) add, the potential stopband attenua-

tion of the filter is very high.

A trial four-resonator filter was designed using a design

procedure similar to the one presented, above for the two-

resonator case. In an earlier work [5], we had studied DW

image guide gratings using Rexolite 1422 having s,= 2.55

and had found that for some convenient dimensions the
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effective impedance ratio was 1.07. We chose to use those Fig. 9. The solid line showsa computed responsefor a four-resonator

gratings for this design. A 0.5-db Chebyshev ripple low-pass DW filter as shown in Fig. 8 with distributed loads at the outer endsof
the parallel-coupled gratings, while the dashed line shows the corre-

prototype was chosen. The prototype element values are

[10, ch. 4]
spending response with infinite, parallel-coupled gratings.

go= 1 gl =1.6703 g2 = 1.1926 Op I 1 I 1
-1——— ——— ————— —__,

g~ = 2.3661 gd = 0.8419 g5 = 1.9841

with u~ =1. The design bandwidth was set at 1.5 percent

without dispersion correction. Computing the factor D

given by (5 b), we found D equals 1.37 for the dimensions

of our gratings at the center frequency, so the actual

bandwidth of the filter was expected to be about 1.1

percent. The derivatives in (5b) were found by use of the

EDC method [9]. The ratio of the edge frequencies of the

overlap band of the coupled gratings was chosen to be

1.02. Then the required uO/ue is found to be 1.024. By (13)

@0 is 1.552 at the center frequency and by (2) X“ is

– 1.871Z0. The impedance-inverter parameter of the cou-

pled gratings is by (12) Klz = 0.303520 = K3d and the

associated reactance slope parameter is from (14) x12 =

15.20Z0 = X3A. Then from step 4 we get xl= X2 = X3 = X4

= 28.56Z0. Following step 5 we compute KOI = 0.5064Z0

= KA5 and Kzq = 0.2550Z0. Using (7a), the closest integer

values of N yielding the required inverter parameters are

NOI = NA5 = 10 for gratings GOI and Gd5 and Nz~ = 20 for

grating Gzq. The corresponding reactance slopes are from
(7b) xOl = X45 = 9.106Z0 and X,3= 11.26Z0. Finally we

can conclude that we should use m, = 3 half-wavelengths

of connecting guide between gratings Gol and G1 and

m, = 1 half-wavelengths between G2 and G23.

In Fig. 9, we show a calculated frequency response for

the design presented above. In Fig. 9, dispersion and line

losses have been taken into account. The response was

calculated assuming a line loss of 0.0227 dB per guide

wavelength which was based on loss measurements of

image guide at the frequency of interest. Bandwidth is

difficult to define for the response shown because the

shape of the passband is rounded due to losses. If the same

response is calculated for the lossless case, equal-ripple
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Fig. 10. A measured response for a four-resonator filter as in Figs. 8
and 9. The dashed line indicates the loss due the mode launchers and the
lengthy input and output guides that were used.

bandwidth is found to be 1.2 percent including the ~ffects

of dispersion. In Fig. 9, the dashed line shows the stopband

response for the case of the coupled gratings being in-

finitely long while the solid line shows the corresponding

response with coupled gratings having 68 notches. Twenty-

one of these notches belong to the distributed load. In

these calculations the loss in the distributed load was

linearly increased up to 2.3 dB per guide wavelength, and

then the last line section was terminated in a lumped Z.

load.

A corresponding experimental filter was fabricated, and

its measured frequency response is shown in Fig. 10. The

test set up used some fairly lengthy input and output

guides to the filter, and the dashed line in Fig. 10 indicates

the loss due to these lines and mode launchers. The mid-

band loss of the filter alone is about 3.1 dB which is

somewhat higher than expected. We believe this is due to
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radiation from some relatively sharp bends used in this

filter. In general we have found that sharp bends would be

desirable in order’ to separate the coupled gratings as

rapidly as possible at their input end, but bends with a

small radius of curvature tend to radiate, as is well known.

To get the response shown in Fig. 10, the filter was fine

tuned by adjusting the spacing between the coupled grat-

ings to realize the required VO/U’ and small pieces of

dielectric were placed near the center of the resonators to

bring them all to resonance at the same frequency.
Measurements were made of the stopband up as far as

26.5 GHz. In the 12- to 18-GHz range, except for two

frequencies, the attenuation was in excess of 55 dB pro-

vided that metal or absorbing dividers were put between

the input and output guides and the adjacent gratings.

These walls were found to be desirable to suppress stray

coupling between gratings, e.g., between Gol and G23 in

Fig. 8. At the two frequencies mentioned, the attenuation

dropped to 37 and 45 dB. It was found experimentally that

the attenuation at these two weak points could be in-

creased above 55 dB if several pieces of fine metal wire

were placed transverse to the guide axis on top of the Gzg

grating in Fig. 8. These wires did not affect the rest of the

response. We believe the observed weak points and their

disappearance with the wires is due to higher-order modes

of the DW. In the 18- to 26.5-GHz range, attenuation was

in excess of 55 dB except for one frequency where it

dropped to 47 dB, again provided that the dividers were in

place. This 47 dB could not be further suppressed with the

wires. We also made tests with no measures taken to

suppress stray couplings or higher order modes. Even then

the typical attenuation was 50 dB in the 12- to 18-GHz

range and 40 dB in the 18- to 26.5-GHz range, with a

37-dB minimum stopband attenuation in the full 8- to

26.5-GHz range measured, so the stopband performance of

this type of filters is inherently good.

VIII. CONCLUSIONS

Techniques for the design of bandpass filters using di-

electric waveguide gratings have been presented. These

filters use both uncoupled gratings and parallel-coupled

configurations of gratings. Simple transmission-line equiv-

alent circuits have been used to analyze these structures. It

was shown how direct-coupled-resonator filter theory can

be applied to design two-, four-, six-, etc., resonator-filters

which have Chebyshev, maximally flat, or other passband

characteristics. Meanwhile, the use of gratings in a

parallel-coupled configuration gives these filters their broad,

strong stopband characteristics. These filters are capable of

high stopband attenuations over a broad band of frequen-

cies, and the attenuation is absorptive over most of the
stopband which should be an additional advantage. The

passband width is limited to less than perhaps, a few

percent in most cases, and the reasons for this were dis-

cussed. Experimental results for a four-resonator filter were

presented and they agreed well with theoretical calcula-

tions. Experiments were carried out using dielectric image

guide, but the design technique itself is applicable to other

forms of waveguides as well.
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